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A numerical formulation for modelling standing acoustic waves of finite but mod-
erate amplitude is presented. A thermoviscous fluid contained in a one-dimensional
tube with rigid walls is considered. The fluid is initially at rest and is excited by means
of a harmonic piston. A second-order wave equation for viscous and homogeneous
fluids is used. The perturbation method is employed. The numerical simulation is
carried out by a multi-time-step, implicit, six-point finite-difference scheme of high
order in the time domain. Displacement and pressure waveforms and distributions are
presented. Numerical results are validated by comparison with an analytical model.
The numerical scheme is illustrated with several examples.c© 2000 Academic Press
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1. INTRODUCTION

High-intensity ultrasonic waves are becoming increasingly useful in industrial processing
for applications such as particle agglomeration, liquid atomization, cleaning, control of
foam, and drying. These applications are possible because of the nonlinear effects produced
by high-frequency and finite-amplitude pressures—macrosonic waves. The efficiency of
this industrial processing is based on the intense nonlinear acoustic field established within
the treatment chamber. Therefore, knowledge of the distribution of the nonlinear pressure
inside bounded cavities is important for developing practical systems. When amplitudes are
infinitesimal, the acoustic waves can be described by linear laws. When the acoustic-pressure
amplitude becomes finite, the equations of motion are nonlinear. We present a new numerical
procedure for the study of standing acoustic waves of finite but moderate amplitude.
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Several papers have presented analytical studies of the propagation of nonlinear waves
[1, 2], as well as the behaviour of nonlinear standing waves [3, 4]. The physical basis of
nonlinear acoustics has also been reviewed [5–9].

Numerical methods applied to the study, modelling, and design of complex sonic or
ultrasonic systems are usually based on the finite-element method or the boundary-element
method, or the coupling of both methods [10–12]. They use the well-known Helmholtz
equation to describe the linear acoustical behaviour of infinitesimal amplitude waves.

On the other hand, various numerical methods have been developed for studying progres-
sive nonlinear waves [13–16]. They are generally based on the finite-difference method.
A very good review is also available (see Section 11 of Ref. [9]). Far fewer numerical
developments exist for standing waves. Of special interest is the recent paper by Ilinskii
et al.[17], which presents an algorithm in the frequency domain based on the Runge–Kutta
method. The model in Ref. [17] is valid for one-dimensional nonlinear standing waves in
an ideal gas. Their mathematical model considers a one-dimensional resonator of arbitrary
shape.

We propose a numerical algorithm for the study of standing acoustic waves of fi-
nite but moderate amplitude. Based upon the finite-difference method, it operates in the
time domain [18]. A second-order wave equation written in Lagrangian coordinates is
considered [5]. Losses due to dissipation of the fluid are taken into account, but losses
due to the walls of the tube are not considered. Dissipation losses are represented by a
third-order partial derivative of the displacement. The dissipation values are not limited
[19].

This work constitutes the first step of a more ambitious and general project. The final
objective is to have a useful tool for designing systems for high-power ultrasonic applications
(e.g., sonochemical reactors, systems for acoustic agglomeration, and compressors) that
includes nonlinear effects. This means that strongly nonlinear waves, three-dimensional
cavities, etc., will have to be modelled. The moderate-amplitude case treated here is the
first step. The validation of its numerical approximation will provide a solid foundation for
constructing successive future models.

2. FUNDAMENTAL EQUATIONS

The paper by Beyer [5] is one of the most complete reviews of the state of the art in
nonlinear acoustics. It includes the basic equations of nonlinear acoustics, as well as the
most important contributions to the development of the field throughout its history.

We consider finite-amplitude standing waves in a homogeneous and thermoviscous fluid.
Only the terms up to the second order in the acoustic Mach number defined bypac/ρ0c2

0 are
considered, wherepac is the acoustic pressure,ρ0 the density of the medium at rest, andc0

the small-signal sound speed.
As is well known, a mechanical system can be described using two kinds of coordinate

systems: Lagrangian (or material) coordinates and Eulerian (or spatial) coordinates [19].
The systems are equivalent when infinitesimal-amplitude perturbations are studied but have
important differences when finite-amplitude perturbations are analysed. We use Lagrangian
coordinates.

To obtain the second-order one-dimensional wave equation, the state equation for an
isentropic fluid [9, Chap. 2] and the conservation of the mass and momentum are considered.
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These equations, without external forces, can be written for a viscous fluid as

p = P

(
ρ

ρ0

)γ
− Q (1)

ρ0− ρ
ρ
= ∂u

∂x
(2)

ρ0
∂2u

∂t2
= −∂p

∂x
+ ρ0νb

∂3u

∂t∂x2
, (3)

wherep is the pressure,ρ is the density of the fluid,u is the displacement of the particle,γ
is the relation of specific heats,P = ρ0c2

0/γ , andνb is a parameter which gives an idea of
the viscosity of the medium—ν is the kinematic viscosity andb = 4

3 + η′
η
, η′ andη being

the viscosities of the medium [5].Q is a characteristic parameter of the fluid. For an ideal
gas,Q = 0, and for sea waterQ = 3 kbar [20]. More details about the applicability of the
state equation (1) can be found in Ref. [20]. From Eqs. (1) and (2) it is easy to obtain

∂p

∂x
= −Pγ

(
1

/(
1+ ∂u

∂x

)γ+1
)
∂2u

∂x2
. (4)

Equation (4) can be approximated by an expansion in Taylor series in terms of the small
parameter∂u

∂x (of the order of the acoustic Mach number) up to the second order:

∂p

∂x
= −Pγ

∂2u

∂x2

[
1− (γ + 1)

∂u

∂x

]
. (5)

Combining Eqs. (5) and (3), we obtain the following second-order wave equation in
Lagrangian coordinates:

ρ0
∂2u

∂t2
= Pγ

∂2u

∂x2
− Pγ

(γ + 1)

2

∂

∂x

[(
∂u

∂x

)2]
+ ρ0νb

∂3u

∂t∂x2
. (6)

The value ofγ determines the nonlinear behaviour of the fluid and can be found in the
literature for the most common fluids (see for instance the chapter by Beyer in Ref. 9). Very
often this equation is written in terms of the so-called nonlinearity parameterβ, defined as
β = γ+1

2 .
To solve the second-order wave equation (6) the perturbation method is applied. The

solution for the displacement of the particle is assumed to be the addition of two terms, the
linear solutionul plus a second-order correctionu2,

u = ul + u2. (7)

u2 must be much smaller thanul (u2¿ ul). Sinceul represents the linear solution, it has
to verify

ρ0
∂2ul

∂t2
= Pγ

∂2ul

∂x2
+ ρ0νb

∂3ul

∂t∂x2
. (8)
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Truncating all the terms of third or higher order, the equation for the perturbation term
u2 is

ρ0
∂2u2

∂t2
= Pγ

∂2u2

∂x2
+ ρ0νb

∂3u2

∂t∂x2
− Pγ

(γ + 1)

2

∂

∂x

[(
∂ul

∂x

)2]
. (9)

If the system has a harmonic excitation,ul will have a unique spectral component centred
at the excitation frequency, whileu2 will present the double and zero frequencies.

In line with our second-order approximation, the state equation (1) can be written as
an expansion in Taylor series in terms of the parameter(ρ0− ρ)/ρ0 (of the same order as
the acoustic Mach number). The resulting equation is combined with Eq. (2), to which the
same approximation has been applied. In this way the following expressions for the linear
pressurepl and the second-order perturbationp2 are obtained

pl = −Pγ
∂ul

∂x
− Q, p2 = −Pγ

∂u2

∂x
+ Pγ

2
(γ + 1)

(
∂ul

∂x

)2

. (10)

The fluid is at complete rest at its initial state,t = 0, and is then excited by harmonic
motion of a piston atx = 0 at the pulsationω (ω = 2π f where f is the frequency). The
following initial and boundary conditions are added to Eqs. (8) and (9),L being the length
of the tube:

for the linear displacement,

x = 0 ul(0, t) = u0 sin(ωt)

x = L ul(L , t) = 0

t = 0

{
ul(x, 0) = 0
∂ul(x,0)
∂t = 0 (∀x 6= 0),

(11a)

for the second-order component of the displacement,

x = 0 u2(0, t) = 0

x = L u2(L , t) = 0

t = 0

{
u2(x, 0) = 0
∂u2(x,0)
∂t = 0.

(11b)

3. FINITE-DIFFERENCE ALGORITHM

In this section, the numerical scheme developed to model nonlinear acoustical phenomena
is described. The technique allows the evaluation of the solutionu, which is a function of the
independent variablesx andt . Pressurep is then calculated. Thus, the acoustical behaviour
of the fluid in the tube is completely known.

In order to solve the nonlinear acoustical problem described in the preceding Section, a
numerical approximation in the time domain has been chosen. Therefore all the frequency
components of the second-order correction are taken into account directly by means of
only one computation. Bulk viscosity of the fluid appears in the differential equation by
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means of a third-order partial derivative. Initially, the fluid is assumed to be absolutely at
rest. The transient phase, which occurs just before the steady-state phase (standing wave),
is entirely modelled. In this paper, the nonlinearity of the equation is limited to the second
order; in the development of the Mach number, all the terms of order 3 or higher are
neglected.

3.A. New Dimensionless Variables

For numerical purposes it is better to write equations in dimensionless form. With this
objective, we create two dimensionless independent variables:

X = x

L
, T = ωt. (12)

Therefore spatial and temporal spaces remain dimensionless, but the displacement
u and pressurep are still quantities with dimensions. The partial derivatives are then
written

∂u

∂x
= 1

L

∂u

∂X

∂u

∂t
= ω ∂u

∂T
(13)

∂2u

∂x2
= 1

L2

∂2u

∂X2

∂2u

∂t2
= ω2 ∂

2u

∂T2

∂3u

∂x2∂t
= ω

L2

∂3u

∂X2∂T
.

So, Eqs. (8), (9), and (10) take the forms, respectively,

∂2ul

∂T2
− νb

ωL2

∂3ul

∂X2∂T
= c2

0

ω2L2

∂2ul

∂X2
(14a)

∂2u2

∂T2
− νb

ωL2

∂3u2

∂X2∂T
= c2

0

ω2L2

∂2u2

∂X2
− c2

0

2ω2L3
(γ + 1)

∂

∂X

[(
∂ul

∂X

)2]
(14b)

pl = ρ0c2
0

L

∂ul

∂X
(15)

p2 = ρ0c2
0

L

∂u2

∂x
+ ρ0c2

0

L2

(
1+ γ − 1

2

)(
∂ul

∂X

)2

. (16)

The boundary and initial conditions for Eq. (11) are then written as

X = 0 ul(0, T) = u0 sin(T)

X = 1 ul(1, T) = 0

T = 0

{
ul(X, 0) = 0
∂ul(X,0)
∂T = 0 (∀X 6= 0)

(17)

X = 0 u2(0, T) = 0

X = 1 u2(1, T) = 0

T = 0

{
u2(X, 0) = 0
∂u2(X,0)
∂T = 0.

(18)
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FIG. 1. Discretisation of the dimensionlessX–T plane.

3.B. Mathematical Formulation

The mathematical formulation employed for the numerical treatment of equations is now
presented. The numerical technique is based on the finite-difference method [21, 22].

3.B.1. Discretisation. The discretisation stage begins by subdividing the dimension-
less X–T (space–time) plane into sets of equal rectangles of sidesδX = h andδT = τ
with equally spaced grid lines. This process generates a number of NPS points in the
dimensionless-spatial space defined byXm = (m− 1)h (m= 1, . . . , NPS) and a number
of NPT points in the dimensionless time space defined byTn = (n− 1)τ (n = 1, . . . ,NPT),
as shown in Fig. 1. Thus, the variableX ranges from 0 to 1 in increments ofh; the variable
T ranges from 0 to 2π NP in increments ofτ , NP being the number of periods desired in
the study. We denote byum,n (respectivelypm,n) the displacement (respectively pressure)
at the node (Xm, Tn) of the plane.

3.B.2. Finite-difference numerical scheme.We now take into account the discretisation
in equations. The variableu is now considered to be regular up to the fifth order inR2 and
the variablep up to the second order inR2. The finite-difference scheme has been developed
regarding the bulk-viscosity term: a third-order partial derivative, double inX and single
in T . The role of this operator is very important for the formation of the nonlinear standing
wave in the tube. For the numerical treatment of this third-order partial derivative∂

∂X2∂T , an
approximation scheme with a high order of truncation error has been developed: a multi-
time-step, implicit, six-point scheme. It is allowed by approximation of displacements
(functions of two variables) up to the fifth order. By using the “computational molecule”
[21], this operator can be expressed as

∂3

∂X2∂T

∣∣∣∣
m,n

= 1

2h2τ



(+1) . . . . . . (−2) . . . . . . (+1)
...

...
...

(0) . . . . . . (0)m,n . . . . . . (0)
...

...
...

(−1) . . . . . . (+2) . . . . . . (−1)


+ O(h2+ τ 2). (19)
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In this way we can represent the other operators of the equations:

∂2

∂X2

∣∣∣∣
m,n

= 1

h2
{(+1) . . . . . . (−2)m,n . . . . . . (+1)}+O(h2)

(20)
∂2

∂T2

∣∣∣∣
m,n

= 1

τ 2



(+1)
...

(−2)m,n
...

(+1)


+O(τ 2)

∂

∂X

[(
∂

∂X

)2]∣∣∣∣
m,n

= 1

h3
[{(0) . . . . . . (−1)m,n . . . . . . (+1)}2

− {(−1) . . . . . . (+1)m,n . . . . . . (0)}2] + O(h) (21)

The “computational molecule” used in Eqs. (19), (20) and (21) means that the numbers in
the “atoms” (for instance (+1)) are the multipliers of the function values (the displacement
u1 or u2) at the corresponding mesh points.

From Eqs. (14) the finite-difference approximations foru1 andu2 have respectively the
order O(τ 2)+ O(h2+ τ 2)+ O(h2) and O(τ 2)+ O(h2+ τ 2)+ O(h2)+ O(h). There-
fore both difference equations are respectively consistent with the partial differential equa-
tions.

Pressures at grid points are evaluated through a classical progressive finite-difference
scheme from the values of the displacement.

Since the numerical scheme is implicit, at each time step, a linear set of (NPS-2) equations
with (NPS-2) unknowns has to be solved. The solutions are determined by means of the
Gauss method [23].

The computation code is written in FORTRAN 77 and formulated using double precision
real numbers. It has been called SNOW-AC (Simulation of NOnlinear Waves in ACoustics).

In the following the stability of the numerical scheme for the equations (8) and (9) is
analysed using the von Neumann method [21].

The numerical scheme obtained foru1 can be written:

−Aum−1,n + (2A+ 1)um,n−Aum+1,n = −Aum−1,n−2+ (2A− 1)um,n−2− Aum+1,n−2

+ Bum−1,n−1+ 2(1− B)um,n−1+ Bum+1,n−1

(22)

with A= νbτ/πc0λh2 = (νb/πc0λ)(τ/h2) = aX and B= τ 2/π2h2 = (1/π2)(τ 2/h2) =
bY;a > 0, b > 0, X > 0,Y > 0. We introduce an initial line of errors and we decompose
this error at the grid points by a finite Fourier series and we investigate its propagation as
t increases. We putum,n = eiβmhξn with the complex numberi = √−1, β the frequency
of the error (which is a real number), andξ the amplification factor. The substitution of
um,n = eiβmhξn into the difference equation (22), after some trigonometric identities and
algebraic manipulations, leads to the following algebraic equation:(

4aX sin2

(
βh

2

)
+ 1

)
ξ2+

(
4bY sin2

(
βh

2

)
− 2

)
ξ +

(
1− 4aX sin2

(
βh

2

))
= 0.

(23)
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The roots of Eq. (23) are

ξ1 = B

2A
+
√

B2− 4A(−A+ 2)

2A
(24)

ξ2 = B

2A
−
√

B2− 4A(−A+ 2)

2A
,

whereA = 4aX sin2(
βh
2 )+ 1 andB = 2− 4bY sin2(

βh
2 ). If |ξ | ≤ 1 the numerical scheme

is stable [21, 24]. It can be seen that 4aX sin2(
βh
2 ) ≥ 0 and 2bY sin2(

βh
2 )/(4aX sin2(

βh
2 )+

1) ≥ 0 and thereforeB
2A ≤ +1. Two possibilities are now contemplated.

(1) If B
2A < −1, ξ2 ≤ B

2A < −1⇒ |ξ2| > 1: the approximation is unstable. However,
this situation cannot be satisfied:B

2A cannot be less than−1.
(2) If −1≤ B

2A ≤ +1, the only useful inequality,−1≤ B
2A , is always satisfied.

(2.1) If B2+ 4A2− 8A ≤ 0, and hence ifτ 2 ≤ π2h2− 4(νb)2π2/c2
0λ

2, then the
roots of the equation can be written

ξ1 = B

2A
+ i

(
8A− 4A2

4A2
− B2

4A2

)1/2

(25)

ξ2 = B

2A
− i

(
8A− 4A2

4A2
− B2

4A2

)1/2

and thus|ξ1| = |ξ2| = ( 8A− 4A2

4A2 )1/2. A ≥ 1 implies|ξ1| = |ξ2| ≤ 1. It can be seen thatA is
always greater than or equal to 1 and so in this case|ξ1| = |ξ2| ≤ 1 is always satisfied.

(2.2) If B2+ 4A2− 8A > 0. This inequality cannot be satisfied.
Finally, the inequality

τ 2 ≤ π2h2− 4(νb)2π2

c2
0λ

2
(26)

is the stability condition. Thus the finite-difference approximation is conditionally stable.
Figure 2 shows the domains of stability and instability performed by the von Neumann
stability analysis withf = 20 kHz,α = 1.81 m−1, andc0 = 340 m/s. A useful relation
betweenh andτ that satisfies the stability condition is employed in the simulations:

τ = −νbπ

c0λ
+ π

√
(νb)2

c2
0λ

2
+ h2. (27)

It is also represented in Fig. 2.

The numerical scheme obtained foru2 can be written

−Aum−1,n + (2A+ 1)um,n − Aum+1,n = −Aum−1,n−2+ (2A− 1)um,n−2− Aum+1,n−2

+ Bum−1,n−1+ 2(1− B)um,n−1

+ Bum+1,n−1+ Ku1n−1
(28)
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FIG. 2. Stability and instability zones produced by the von Neumann analysis. For the representation,f =
20 kHz,α = 1.81 m−1 andc0 = 340 m/s. Comparison of the von Neumann criterion with the relation betweenh
andτ employed during the simulations.

with A = νbτ/πc0λh2 = (νb/πc0λ)(τ/h2) = aX, B = τ 2/π2h2 = (1/π2)(τ 2/h2) =
bY; a> 0, b> 0, X> 0,Y> 0. Ku1n−1

=C[(ulm+1,n−1 − ulm,n−1)
2− (ulm,n−1 − ulm−1,n−1)

2],
whereC = c2

0(γ + 1)τ 2/2ω2L3h3, issues from the calculations oful and is considered to
be a constant. The constantKuln−1

does not influence the von Neumann analysis. Therefore
this analysis yields to the same criterion as forul .

FIG. 3. Procedure of the computational code.
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The analysis of stability has shown the usefulness of the relation (27) betweenτ andh;
when this relation is employed, the finite-difference approximation is stable. As shown be-
fore, the finite-difference equations are both consistent with the partial differential equations.
So when the relation (27) betweenτ andh is employed, it follows that the finite-difference
approximation is convergent [21]. An example of the convergence of the scheme is shown
in Section 4.B.

A value ofτ less than the value used by the relation (27) could also ensure the stability
(see Fig. 2). Nevertheless the relation (27) automatically fixes theτ values very close to the
stability bound.

Figure 3 shows the schematic representation of the algorithm. The space reserved for the
writing on disk is (217∗NPT∗NPS)/(10242) Mbytes. This storage includes two files (for
displacement and pressure) written by columns, which make the posttreatment easier.

4. RESULTS

In this section, the algorithm presented above is illustrated. All the computations were
run on a processor Pentium II MMX of 300 MHz and 64 MB Ram. CPUt means the running
time of a simulation using this processor. This time includes an analytical calculation of
the linear solution at grid-points and an evaluation of its maximum value in order to get a
reference for fast comparisons with the nonlinear values.

4.A. Validation

In this section, results from the numerical algorithm are compared with results produced
by an analytical model. This analytical model is also a perturbation model and Eqs. (8) and
(9) are solved in the frequency domain; i.e., an equation is written and solved for every
frequency studied. The approximationα ¿ k is also assumed (whereα = ω2νb/2c3

0 and
k = ω/c), and then all terms of orderα2 or less are neglected.

With this approximation the following solution is obtained for Eq. (8) and the boundary
conditions (11a),

ul = u0 cosωt
sink(L − x)

sin kL
, (29)

wherek = k0− iα, k0 = ω
c0

. By substituting solution (29) into Eq. (9) we obtain the second
order correction

u2 = cos(2ωt)[C1 cos((2k0− i 4α0)(L − x))+ C2 sin((2k0− i 4α0)(L − x))]

+ (D1x + D2)+ C3 cos(2ωt)(L − x) coskn(L − x)+ D3 sin 2k(L − x) (30)

with kn = 2k0− iαn, whereC1,C2,C3, D1, D2, D3, andαn are indefinite constants.C1,C2,

D1, andD2 are obtained from the boundary conditions, andC3, D3, andαn by substituting
Eq. (30) into the wave equation (9). For the perturbationu2 we consider a rigid-ended tube
because the piston is harmonically vibrating (boundary conditions (11b)),

C1 = 0 D1 = D3 sin 2kL/L
(31)

C2
∼= − j

C3

4α0
D2 = −D3 sin 2kL,
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FIG. 4. Comparison between numerical and analytical results for a resonant air-filled tube excited at 20 kHz;
u0 = 3× 10−7 m; α = 1.81 m−1; L = λ/2. (a) First-order component. (b) Second-order perturbation.

where the assumption of small attenuation has been used. By substituting solution (30) into
Eq. (9), using (31) and again neglecting all the terms on the order ofα2

0, α
2
n, andα0αn we

obtainC3 = (γ+1)
16k0

k3u2
0

sin2[kL]
, αn = 2α0, andD3 = C3

k . Even if the treatment of the attenuation
is more approximate, important differences are not expected for small attenuation values
and tube lengths which are not too large.

Both methods are applied to an air-filled rigid-walled tube(c0 = 340 m/s; ρ0 =
1.29 kg/m3). The excitation frequency of the piston is 20 kHz and its maximum displace-
mentu0 = 3× 10−7 m. We considerγ = 1.6. As explained above, only bulk attenuation is
considered (aω2 attenuation dependence), without any limitation on its parameter valueα.
This fact allows this value to increase in order to take indirectly into account losses due to
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FIG. 5. Convergence study of the scheme at 20 kHz;u0 = 3× 10−7 m; α = 1.81 m−1; L = λ/2. (a) Funda-
mental frequency. (b) Second-order perturbation.

the walls of the tube that are not considered explicitly. The model is effectively applied to
narrow tubes in which a large quantity of energy is lost in the walls. So we have to increase
the attenuation value to produce a more realistic simulation, which is whyα = 1.81 m−1, a
high value for a free-field problem. The length of the resonant tube isL = λ/2= 0.0085 m.
For the numerical simulation, the spatial steph is 0.02, and 200 periods (0.01 s) are anal-
ysed; in this way, NPS= 51 and NPT= 21620. CPUt= 2:08:00. The storage used on disk
is 228.18 Mbytes. Figure 4 shows the amplitude displacement obtained with both methods.
Displacement distributions are compared in Fig. 4a for the first-order approximation and in
Fig. 4b for the corresponding second-order perturbation. Excellent agreement between the
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FIG. 6. Temporal evolution of the acoustic wave in the resonant tube from the rest state at 20 kHz;u0 =
3× 10−7 m; α = 1.81 m−1; L = λ/2. (a) Fundamental component of the displacement atλ/4. (b) Second-order
component atλ/8. (c) Second-order component atλ/4.
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FIG. 7. Distribution of the pressure amplitude at 20 kHz;u0 = 3× 10−7 m; α = 1.81 m−1; L = λ/2.
(a) Fundamental component. (b) Second-order component.

analytical and numerical methods is observed, which means convergence of the numerical
scheme has been obtained and the results we get are coherent with the analytical ones.

4.B. Convergence Study

A convergence study was performed analysing the example presented above. We compare
the results of using 51 spatial points versus other numbers of points to solve the same
problem. A series of calculations was performed with various spatial-grid sizes: 4, 7, 14,
26, and 51 spatial points. Results are shown in Fig. 5. Figure 5a shows the fundamental
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FIG. 8. Wave form (a) and harmonic components (b) of the pressure at the reflector at 20 kHz.u0 = 3×
10−7 m.α = 1.81 m−1. L = α/2.

frequency component and Fig. 5b shows the second-order perturbation. Rapid evolution to
convergence can be seen when the number of spatial points grows (see Section 3.B.2.).

4.C. Examples

In this section, various results show that the numerical methods presented in Section 3 are
well founded. In the first part, the considered resonant rigid-walled tubes have a length of
λ/2, λ being the wavelength corresponding to the excitation frequency; in the second part,
λ/2-,λ-, and 3λ/2–length resonant rigid-walled tubes are studied. All the results presented
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FIG. 9. Amplitude value of the standing pressure at 30 kHz;u0 = 3× 10−7 m; α = 4.07 m−1; L = λ/2.
(a) Linear pressure. (b) Second-order pressure.

were obtained from simulations performed with a number of spatial points suitable to lead
to convergence of the numerical scheme. By modelling the transient stage from starting
absolute rest of the fluid, we are able to simulate the whole real problem. Nevertheless,
more time grid-points are needed and therefore more CPUt and computer storage capacity.

4.C.1. The same example used to compare the numerical and analytical models
(Section 4.A) is considered. Figure 6 shows the temporal evolution of both first (6a) and
second-order (6b and 6c) components of the displacement, from the rest state to the sta-
tionary wave. Figures 6a and 6b correspond to points at which the component is maximal:
at λ/4 for the linear component and atλ/8 for the second-order one. Figure 6c shows a
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point at which the second-order component is minimal: atλ/4. At the point of maximal
amplitude, the second-order component increases more slowly from the rest state than the
fundamental one. Figure 7 shows pressure distributions corresponding to each approxima-
tion. The second-order component presents a maximum at the node of the fundamental,
while its nodal points correspond to zones where the fundamental does not vanish. This
fact means that the nonlinear behaviour of the fluid generates the disappearance of the
pressure node in the resonant tube. In the case of a progressive plane wave, it is well
known that the distortion of the wave increases with the distance from the source. In the
case of a standing wave, the end of the tube closer to the source corresponds to one of
the maximal values of the second harmonic. Figure 8a shows the wave shape of the pres-
sure at the reflector (x = L). Figure 8b represents the corresponding fast Fourier transform
(FFT). We can see that the nonlinear distortion of the wave is due to the double-frequency
component.

We now consider an air-filled tube (c0 = 340 m/s,γ = 1.6, ρ0 = 1.29 kg/m3) excited at
30 kHz with an amplitude of 3× 10−7 m;α = 4.07 m−1. The spatial step ish = 0.02. Thus
NPS= 51 and NPT= 16856. CPUt is about 1:40:00 for a study of 150 periods. Figure 9
represents the tri-dimensional (distance, time, pressure amplitude) diagram of the pressure
throughout a standing period. The second-order correction pressure induces the distortion
of the total pressure and the disappearance of the node at the centre of the tube.

Figure 10 shows the evolution of the maximal absolute value of the second-order and
total pressure reached during a standing period versus the excitation displacement am-
plitude. The excitation frequency is 100 kHz, and the medium is air(c0 = 340 m/s, γ =
1.6, ρ0 = 1.29 kg/m3). In this calculation, a very high attenuation (α = 45.25 m−1) has
been used. Results show the increase of the wave distortion (showing the importance of the
second-order component) asu0 grows. In fact, the second-order component increases ac-
cording to a quadratic law, while the fundamental component increases according to a

FIG. 10. Absolute value of the second-order perturbation and total displacement at 100 kHz;α = 45.25 m−1;
L = λ/2. Evolution of its maximum versusu0.
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linear law, with regard to the excitation amplitude. Saturation does not occur in the range
of amplitudes for which a second-order perturbation model is valid.

4.C.2. Other air-filled tubes are now considered (c0 = 340 m/s,γ = 1.6, andρ0 =
1.29 kg/m3). The excitation frequency is 20 kHz andα = 1.81 m−1. Figure 11 shows the
space representation of the standing pressure for three tubelengths:λ/2 (1), 2· λ/2 (2), and
3 · λ/2 (3). For all the cases, the displacement of the piston is the same,u0 = 0.3µm, and the
representation is shown at the time of maximal pressure during a standing period. Figure 11a
shows to the fundamental frequency and Fig. 11b shows the second-order components.
Results clearly show the change in the distribution of the pressure along the tube and the

FIG. 11. Pressure distribution for three tubelengths at 20 kHz;u0 = 0.3 µm; α = 1.81 m−1. (1) L = λ/2.
(2) L = 2 · λ/2. (3) L = 3 · λ/2. (a) Fundamental frequencies. (b) Second-order components.
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decrease of the nonlinearity as the length increases (the importance of the second-order
component in relation to the fundamental decreases).

5. CONCLUSION

A numerical algorithm based on the finite-difference method has been presented. It allows
the modelling of finite but moderate amplitude standing acoustic waves in the time domain.
The numerical method has been validated by comparison with an analytical model. Various
kinds of results show the efficiency and limits of the simulating code. This procedure opens
a new framework of development for the modelling and design of high-power ultrasonic
processing systems. More sophisticated versions of the code, which include higher order
nonlinearity (weak shock approximation [25]), geometrical variations of the resonator, and
more complicated dispersion relationships, are currently under development.
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